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The meshing and interpolation problems encountered during adaptive remeshing on 
unstructured finite element grids are analyzed. Both problems are solved independently in 2D 
and 3D with cost efficient data structures issued from recent advances in compufational 
geometry. Implementation algorithms and timings are presented in 2D. The performance of 
commonly used schemes is also reviewed. 0 1990 Academic Press, Inc 

1. INTRODUCTION 

The accurate solution of industrial fluid flow problems with the finite element 
method (FEM) requires large amounts of memory space and computer time. The 
accuracy of the solution can be improved without increasing the computational cost 
by concentrating the elements where they are most needed [l]. This is termed 
refinement when a subdivision of an initially coarse mesh is performed, while is it 
called remeshing when an entirely new mesh is generated. In the optimal variation 
of this scheme, called adaptive, the mesh spacing itself is computed. The memory 
space required for the adaptive remeshing of a problem is related to the number of 
elements in the grid and is much smaller than the total size of the finite element 
equation system. The memory constraint for adaptive procedures is therefore only 
second to the execution time constraint. Hereafter emphasis is put on reducing the 
execution time. 

Once the finite element problem is solved on the initial user defined mesh, an 
error estimate is computed at each node. The error level to be reached is chosen, 
and the local mesh size required to achieve it is computed at each node using the 
error estimate [2]. The new mesh is then built, and an initial solution is needed at 
the new nodes to restart the solution procedure if it is iterative. The solution on the 
initial mesh is an adequate guess for this purpose, provided it is interpolated on the 
new mesh. Therefore, both a fast meshing algorithm and a fast interpolation scheme 
between meshes are needed for the implementation of adaptive schemes. For steady 
flows, only one or two remeshing iterations lead to convergence using a local error 
indicator, and global remeshing is suitable [3]. For time dependent or front 
tracking problems, truly local refinement or patch remeshing is best suited [4]. The 
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chosen algorithms and the associated data structures should therefore allow for 
remeshing of the total domain or part of it. 

Data structures devised to answer both the meshing and the interpolation 
problem have been presented in the finite element literature. They are either 
modifications of classical structures [2, 31, or original structures, as reviewed in 
[4]. These dual-purpose structures are based on the partition of space in nested 
square cells. 

The novelty of the present paper is to propose to decouple the meshing and inter- 
polation solutions in order to use data structures of proven performance directly 
issued from recent advances in computational geometry in 2D and 3D [S-lo]. The 
performance of these structures is governed by the number of points in the mesh 
rather than by grid point spacing. It should be noted that the full benefit of these 
structures can only be obtained with a programming language that supports true 
dynamic allocation and recursion [ 111. The present work was carried out using the 
C language. 

2. CURRENT ADAPTIVE STRUCTURES 

2.1. Data Structures and Optimality 

The most elementary one-dimensional data structure is a linear list, in which all 
points, or numbers, are stored sequentially. Storing N numbers in such a sequential 
list takes up minimal memory space, i.e., N, and searching for an item also costs 
O(N). It is possible to improve the search performance by using a more complex 
structure, the classical binary tree (Fig. la). This tree allows for insertion, deletion, 
or search of any of its elements in time O(log, N), and total storage is still only 
O(N). In what follows, log N is used to mean log, N, since the order is defined to 
a multiplicative constant. The computational cost of the tree search, or time perfor- 
mance, is equal to the distance between the root and the farthest leaf of the tree, 
also called the depth of the tree. Thus, the cost of search in a binary tree varies with 
the order of insertion of the points (Fig. lb), degenerating into a worst-case perfor- 
mance of O(N) when points are inserted in order. The tree is then merely a linear 
list of depth N. Therefore, the true criterion of a structure’s suitability is its worst- 
case performance, not the average one, and time complexities given in this paper 
are worst-case bounds. The worst-case performance of the simple binary tree can 
be made logarithmic by balancing it, turning it into an AVL tree [ll]. No other 
structure can do better, and the balanced binary tree is the optimal structure for 
one-dimensional search problems, both for time and space. 

In 2D and 3D, O(log N) in time and O(N) in space have not been achieved 
simultaneously to this day, and the best performance in time is often achieved at 
the cost of redundancy in storage. Optimality is not always defined, and solutions 
have to be compared to present day best cases rather than absolute yardsticks. In 
any case, the chosen solutions should be of known performance. Furthermore, 
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FIG. 1. (a) Balanced binary tree of depth 3 obtained by insertion of 15 data points in optimal order: 
8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15; (b) Binary tree of greater depth obtained by insertion of 
the same data points in random order: 11, 10, 13, 5, 12, 15, 3, 8, 14, 2, 6, 7, 9, 1, 4. 

intricate structures that are mere embodiments of algorithms should be avoided and 
a compromise is to be found between programming complexity and execution time. 

A second restriction to keep in mind when evaluating structures is that the use 
of recursion and pointer arithmetics in order to ensure asymptotic optimality leads 
to computational overhead. This in fact deteriorates the performance of the algo- 
rithms for small data sets, as shown in Fig. 2, where an efficient sorting algorithm, 
shellsort, is compared to a more sophisticated one, quicksort, that uses recursion 
[ 111. It can be seen that while the advantage of the recursive solution is obvious 
for N larger than 100, there is no gain to speak of for small N. 

2.2. Meshing 

The FEM yields an approximate solution of a set of differential equations on a 
bounded domain. The solution is computed on a discrete set of points. These points 
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FIG. 2. The gain in execution time obtained by the use of recursion for sorting numbers only 
becomes significant for large data sets. 

form a mesh of elements, called the discretization of the domain. The elements must 
have a good aspect ratio in order to produce an accurate FEM solution [12]. In 
the case of triangular elements, this is equivalent to stating that the smallest angle 
of all triangles must be bounded away from zero. 

The meshing of complex geometrical features is best carried out using triangles 
in 2D and tetrahedra in 3D. Being d-simplices, they can fill any polygon in 2D or 
polyhedron in 3D, are always convex and never degenerate. Their properties with 
respect to the convergence of the finite element method are well known [12], and 
they also generate minimum matrix bandwidth. For these reasons, the present work 
is based on a triangular mesh generator. 

The classical method of mesh generation is in two steps: generation of a set of 
points covering the area to be meshed, then valid triangulation of the domain using 
these points. In 2D, the N points are usually evenly distributed on a rectangular lat- 
tice, and their computation time is O( 1). Total execution time of order O(N log N) 
has been obtained for the Delaunay triangulation method [13]. The resulting 
triangulation and the associated tesselation define the zone of influence of each 
point. This would be an ideal framework for searching for the nearest neighbor of 
all points [S]. But since the aspect ratios of the individual triangles are not checked 
during generation, Laplace smoothing [14] is necessary before the mesh can be 
used for finite element computations, and the essential tesselation property is lost 
before being used. There is therefore no practical advantage to having a tesselation 
associated with a finite element mesh. 
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In 3D, the points are also usually evenly distributed on a rectangular lattice. 
While a regular triangulation can be obtained in 2D from such a network, it cannot 
in 3D. Indeed, it is impossible to build a basic cube from several identical 
tetrahedra. This is a fact well known to crystallographers, who call the basic cube 
a Bravais lattice [see [8], for instance]. Tetrahedra do not stack up to form a 
repetitive pattern in 3D like triangles do in 2D. A common scheme implemented in 
current solid modeling sofware is to divide each basic cube formed by eight points 
of the network in live tetrahedra, the center one being twice larger than the four 
others (Fig. 3), that is, not a regular mesh, and the local error is still bound by the 
largest element. 

Furthermore, the points have to be unevenly distributed when a finer mesh is 
needed close to singularities to keep the error within reasonable bounds. The 
generation of the set of points itself can be costly in the case of such graded meshes, 
thus adding another drawback to the two-step method. Lastly, this type of 
triangulation does not allow for directionality, a key property for front-tracking 
problems. 

A more recent approach to mesh generation is the advancing front method [16, 
173. It can be used for convex or concave polygons, with multiple boundaries, and 
directionality can be included. In this method, a “greedy” algorithm is used. Points 
are created one at a time in order to build a new triangle with optimal shape, i.e., 
equilateral for uniform meshing. Possible intersections with existing edges and point 
inclusions are checked locally to guarantee a valid triangulation. In order to do so, 
existing active front points within a given neighborhood of the newly created point 
have to be found. 

Neighbor search in 2D is presently carried out using the quad-tree, introduced to 
the finite element literature by [ 181 and used for advancing front mesh generation 
by [2]. The quad-tree is a way to store a rectangular lattice of n x m evenly spaced 

FIG. 3. The classical decomposition of a cube in five tetrahedra leads to a large central tetrahedron, 
represented with thick lines, surrounded by four small ones. 
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points. These points are the ends of (n - 1) x (m - 1) adjacent segments, which 
partition the plane in (n - 1) x (m - 1) identical cells. The quad-tree was originally 
used to measure the union of rectangles for VLSI network design. The depth of a 
quad-tree in the cells of which N random points are stored depends on the 
minimum spacing between points, rather than on the number of points. In the case 
of graded meshes, points are unevenly distributed, so the structure is not balanced. 
Its depth is a logarithmic function of the minimum mesh size, far greater than 
O(log N), and the quad-tree does not solve the neighbor query optimally. Further- 
more, the search is performed on a quad-tree eventually containing the whole mesh, 
when in fact the points of interest are only those of the advancing front itself, a 
small dynamic subset of the mesh. Performances in O(log N) reported for mesh 
generation [2] are fortuitous and can be explained by the fact that the structure 
never contains all N points during meshing. Efficient implementation of the 
advancing front method requires a specific data structure to tackle this problem. 

2.3. Interpolation 

Interpolation techniques all require the knowledge of the location of the new 
point in the elements of the initial mesh. The problem is one of point location, on 
a static structure of N points. 

Several data structures containing the points of the initial mesh have been used 
for this problem. They are based on the partitioning of space in identical square 
cells and are reviewed in [4]. In addition, the use of the quad-tree was proposed 
for interpolation [2]. This family of structures containing the mesh points does not 
directly solve the point location problem. Linked lists have to be grafted to connect 
neighboring elements, and their computation and storage are inefficient. Costly 
multiple tree traversal is required. When these structures are created during mesh 
generation, they have to support insertion and deletion as well, which adds to their 
complexity. While cost of (log, N) is claimed for interpolation on an unstructured 
grid using the quad-tree [2], the actual cost is much larger due to the tree’s depth 
and its inadequacy to point location query. The performance of the other structures 
is similar, since they are based on the same principle, and while they certainly 
represent a major improvement over linear search, better results can be achieved for 
the same programming complexity. 

An altogether different approach is suggested in [19]. The initial nodal field is 
first interpolated onto a much finer regular square mesh. Interpolation of any new 
point is then performed at very low cost on this intermediate mesh rather than on 
the initial mesh. The cost of interpolation of the initial field on the fine mesh is 
large, since it is performed with a straightforward algorithm. In fact, the cost of this 
scheme is superior to the cost of plain interpolation as long as the cardinality of the 
new finite element mesh is smaller than the number of points in the fine mesh. Since 
this one needs to be very fine to avoid errors due to the double interpolation, this 
algorithm ,is ill-suited to our purpose. 
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3. OVERALL ADAPTIVE STRATEGY 

3.1. Divide and Conquer 

The idea governing our strategy is to improve on the above results by solving 
meshing and interpolation as two-independent problems. While meshing, the 
searched set is a dynamic list, the advancing front. On the other hand, interpolation 
can be identified as a point location problem on a static list. Using a divide and 
conquer approach, we will present specialized structures to solve each problem 
separately. Their implementation is a straightforward application of bisection and 
does not require the handling of extra pointers. 

Both data structures are not needed simultaneously, and neither is needed during 
resolution of the finite element problem, when memory space is in high demand. 
The advancing front dynamic list is only needed during meshing, and it is empty 
once the domain is fully meshed. During solution of the finite element problem 
itself, the N points of the mesh and corresponding elements can be stored in a linear 
array, minimizing storage. Once the problem is solved and the new adapted mesh 
is completed, the static data structure containing the N points for the interpolation 
can be built. It is then discarded before the next iteration, once again saving 
storage. 

3.2. Range Search 

The meshing neighbor search is a search in a fixed radius disk centered on a 
point. This is part of a wider class of problems called range search. The radial 
search can be relaxed to range search in a product of one-dimensional segments, 
called orthogonal range search. The cost of the latter is lowest of the two [S], and 
the problem encountered in mesh generation is best treated as an orthogonal range 
search. 

In one dimension, range search on a static set of N points can be accomplished 
optimally in time O(log N) using a balanced binary tree in which the points them- 
selves are stored. The tree is traversed twice, once searching for the left end of the 
range, once for the right end. Points situated between the two paths are then 
gathered. In d dimensions, a ndive decision tree would lead to the erroneous lower 
time bound of O(log N), but the proven bounds are higher. This can be shown 
qualitatively in 2D using Fig. 4. In a time of O(log N), one can only tell which 
points are included in the union of two segments using one binary tree per axis. But 
the answer to the range search problem is the list of points belonging to the inter- 
section of both segments, a different problem altogether. The extension of the 
binary tree to d dimensions, the range tree [6], solves this query directly in 
O(log ZV)‘), A range tree is a succession of nested binary trees. Each node of the 
main tree, corresponding to the x axis, is itself organized as a binary tree, called 
sub-tree and corresponding to the y axis. In 3D, every node of the sub-tree itself is 
a tree corresponding to the z axis. 

The dynamic multi-dimensional problem is more complex, since the nested struc- 
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FIG. 4. The union of two segments can be found in 2 x log N, but finding their intersection (cross 
hatched area) is more costly. 

tures must support deletion and insertion. The proven lower worst-case bound for 
dynamic range search structures is O(log N)d), but the structure itself is unwieldy 
[S]. Another method also claims the same performance [7], but the implementa- 
tion is again far from simple according to its author. 

The dynamic structures associated with optimal performance being so complex, 
let us recall the warning of Section 2.1 and estimate the size of the lists to be 
handled. For a large problem comprising 2ooO mesh points in a square domain in 
2D, the maximum size of the advancing front is typically 300. This is large enough 
to justify the use of binary structures and to rule out linear lists. On the other hand, 
if a multi-dimensional tree is used, the number of points stored in each node of the 
main tree is 87 at the most, and 34 on the average. The large computational effort 
necessary to update the sub-trees would not be worthwhile for such small lists. 
Therefore, simpler structures are needed and it was decided to use two independent 
balanced binary trees, one for each dimension. Each tree can be easily balanced 
after insertion or deletion, leading to a logarithmic worst-case bound. This com- 
bination does not yield a direct answer to the range search, as seen earlier, but 
rather two lists of coordinates. To answer the range search query, the intersection 
of the x and y lists is then obtained as follows: the two short lists are first sorted 
using the sorting routines described above, and their common points are found by 
going down the list once. 

3.3. Point Location 

The range search problem was solved using a structure containing the points of 
the mesh themselves. The point location problem associated with interpolation can 
only be solved effkiently with a structure containing a description of the elements 
rather than the points themselves [9]. This duality between both problems further 
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justifies our divide and conquer approach. Recall that we are only interested in the 
static problem here. 

In one dimension, the dual problem is solved directly using a structure in which 
segments are stored [lo]. A skeleton binary tree is first built with the (N- 1) 
segments of unit length formed by N points [Fig. 5a]. Each segment is then stored 
in the nodes that it fully contains (Fig. 5b). A segment is not stored in a node if 
it is already stored in the corresponding parent node. The point location perfor- 
mance of such a one dimensional static segment tree is O(log N). This is true even 
for unevenly distributed points, in contrast with the results presented in Section 2. 
It is due to the fact that bisection is not used here to partition the real space in 
equal halves, but rather to divide the point set in two halves of same cardinality. 
This is analogous to using the median rather than the mean of a data set for 
statistical analysis: the crucial step in building balanced binary structures is to 
divide the data set in two halves at each level, independently of the coordinates of 
the data points. The segment tree is used here with real numbers, and a mapping 
between the real space and the integer segment [ 1, N] is necessary. The coordinates 
are first ordered and then identified by their position number in the ordered list. 

x 

I,3 I,4 

z! 

1.3 3,4 
C A 

1.2 2,3 

FIG. 5. (a) Skeleton segment tree defined by five points; (b) Skeleton tree loaded with A = [l, 33, 
B=[2,5], C=[1,4]; (c) Rectangles A=[1,3]x[2,4], B=[2,5]x[3,5], C=[1,4]x[1,3] 
generating the above main segment tree by mapping on the x axis; (d) Loaded secondary trees for the 
y projection of these rectangles; there is one tree per non-empty node of the main tree. Nodes of the x 
tree are represented as circles, nodes of the y tree as ovals. 
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FIG. 6. Triangles corresponding to the rectangles of Fig. 5. 

A segment turns into a product of segments in higher dimensions, and the one- 
dimensional concept can be broadened. The extension of the segment tree to d 
dimensions has performance of O(log N)d [9]. It can be viewed as a segment tree 
of segment trees. In 2D, the projection of the rectangles on the x axis (Fig. 5c) are 
stored in the main tree (Fig. 5). Each non-empty node of this main tree contains 
a list of the corresponding projections on the y axis arranged as a segment tree 
(Fig. 5d). The total building time for this static structure is O(Nlog N)d). In the 
case of regular meshes, the mapping from real to integer space removes double 
values and reduces the size of the set from which the skeleton tree is built, further 
improving the performance of the structure below its theoretical bound. 

The performance of the tree can be improved to O((log N)d- ‘) by storing more 
information in the nodes [9]. This is the present day best case for point location, 
but represents again an intricate modification according to its author. In order to 
remain with a straightforward and well documented structure [S], the,unmodified 
segment tree was chosen here as an efficient answer to point location queries. 

The two-dimensional segment tree is designed to store rectangles with sides 
parallel to the axes. To use it with unstructured grids, each triangular element is 
first replaced by the smallest rectilinear rectangle that contains it. Figure 6 shows 
a set of three triangles associated with the rectangles and trees of Fig. 5. The 
ordered list of the projection of rectangle vertices on the x axis is mapped onto 
[ 1, N] in order to build the main skeleton tree. For each main node, the projection 
on the y-axis of the Nx rectangle vertices associated with the elements stored in that 
node is mapped onto [ 1, Nx] in order to build the secondary tree. 

4. MESHING RESULTS 

While the data structures chosen above are appropriate for solving both 2D 
and 3D problems, the implementation presented in this section is strictly 2D. 
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Implementation in 3D does not require any changes as far as the data structures 
are concerned. 

Advancing front mesh generation has been detailed in [2, 16, 171. It has to be 
presented again here in order to highlight the features of the present implementa- 
tion. The advancing front is a list of n faces, n being small compared to A? Each 
face is an ordered pair of vertices. The order defines the direction of the inner nor- 
mal to the face, i.e., the inside of the domain to be meshed. Each face is stored in 
the two binary trees using the coordinates of its mid-point. Each node of the first 
tree contains the x coordinate of the mid-point, the key to the ordering of that tree. 
It also contains the face number, the number of the first vertex of the face, and the 
memory address pointing to the next nodes (Fig. 7). The second tree contains the 
corresponding information for the y axis. For a given orthogonal range, a search 
is conducted on each tree to collect the faces mid-points belonging to each one- 
dimensional range. This yields points contained in the union of one-dimensional 
segments. The intersection of the two lists has then to be computed. This post- 
processing is done on a small subset of the n faces, and the extra cost to the 
logarithmic performance of the structure is small if the lists are first sorted with an 
optimal routine (see [ 111, for instance). The upper bound for a single range search 
performed during meshing depends on the mesh parameters and topology of the 
domain. It increases of an unknown but small amount as N increases. 

The list of vertices and edges defining the initial boundary can be entered 
manually or provided by a solid modeler for complex geometries. This boundary 
may enclose only part of the total domain for partial remeshing. The mesh size is 
given at each vertex. The number and the length of segments along each edge are 
interpolated from both end values, thus building the initial generation front. For 
graded meshes, the mesh size in the interior of the domain is controlled by the 
vertex mesh size and by additional control points. These allow for refinement in the 
middle of the domain required for complex flow patterns. 

The triangulation proper starts with the first face in the initial front, i.e., the root 
of the face tree. The coordinates of the point that would form an optimal triangle 
with that face as a base are computed. This is called the ideal point. Using the 
binary face trees described above, faces and points located in an orthogonal range 

x tree 
I I 

x coordinate 
of face center 

face number 

y tree 

of face center 

vertex 2 of face 

face number 

FIG. 7. Nodes of the x face binary tree and y face binary tree used for range searching. 
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centered on the ideal point are found. The range size is user defined. The points in 
the range are ordered by increasing distance from the ideal point, and all points 
beyond a maximum distance are discarded. This distance defines the acceptable 
deviation from the ideal triangle. In other words, using any of the points in the 
reduced list as an apex would lead to a triangle with an acceptable aspect ratio. The 
first point of the reduced list is used to create a new triangle. If this generates no 
intersection with the advancing front or no inclusion of front points, this triangle 
is added to the mesh and the advancing front is updated. If not, the remaining 
points of the reduced list are tested in turn, ending with the ideal point. If no 
suitable point was found in the list, a new face is chosen in the range and the 
procedure is restarted. 

Once a new triangle is created and added to the connectivity list, the process 
continues with the first remaining active face in the range. Thus there is no time 
spent searching for the next face [2], and the resulting meshing pattern is a spiral 
if the boundaries have been entered in cyclic order in the trees. However, when a 
face connecting two opposed boundaries is created, the domain to be meshed is 
naturally divided in two closed sub-domains. The location of that bridge edge is 
stored and will be used to restart the algorithm once no active face is found in the 
vicinity of the last created point. 

The above algorithm is termed a greedy algorithm since it sacrifices global 
optimality for local optimality. To check this tendency, the Boolean inclusion 
criterion was replaced by a more stringent one. To determine if an existing active 
point is within the triangle to be built, the sine of the angle between each oriented 

Time (s) 

3w 

-W measured 
- - NlogN 

20 - 

lo- 

O- I I I 1 
0 100 200 300 400 500 

Number of points 

FIG. 8. Execution time of 2D meshing algorithm. Implementation on a 16 MHz 80386 micro- 
computer in C language. 
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face of the triangle and the vector joining the origin of that face with the point to 
be checked is computed. A positive sine means that the point is inside the triangle. 
Here, the sine is compared to a user-defined negative tolerance instead of zero. This 
allows for rejection of triangles that would lead to neighbors with very acute angles 
and increase the local error bound of the solution. With this scheme, there is no 
need for overall Laplace smoothing of the mesh. 

In order to demonstrate the performance of the binary structure used, the 
meshing time for a sequence of meshes of increasing cardinality is plotted in 
Fig. 8. It can be seen that total meshing time is roughly linear in N. The scale of 
the Nlog N curve is arbitrary, and it is only presented for visual comparison. 

5. INTERPOLATION RESULTS 

The implementation presented in this section is again strictly 2D. Implementation 
in 3D does not require any changes as far as the data structures are concerned. 

The static list of points on which the location query has to be answered 
represents the entire mesh, and is stored in a segment tree built as described above. 
Given the coordinates of a new point to locate in the existing mesh, the main tree 
is then just traversed once using bisection as follows. The x coordinate of the new 
point is compared with the mid-point of each node to determine the direction of 
branching. The address of all the main nodes thus traversed are gathered. Recall 
that the node values are integers, and the comparison is actually made with the 
mapping of these integer values onto real space. The secondary tree of each 
traversed main node is then visited in the same way using the y coordinate of the 
new point, and the contents of all nonempty secondary nodes is gathered. This is 
the list of rectangles containing the new point. It then remains to verify inclusion 
of the points in the element associated with each rectangle. Only two rectangles are 
gathered typically, leading with very little algebra to the triangle in which the new 
point falls. 

The average time of execution for the location of a single point in a mesh was 
chosen as representative of the performance of the algorithm. Graded meshes were 
generated in a 4: 1 contraction (Fig. 9), a geometry of practical interest in polymer 
engineering [l]. Location queries were performed on that structure for 10,000 
regularly distributed points, leading to the average execution times plotted on 
Fig. 10. A logarithmic least square lit of the average execution time shows that the 
average performance is in O(log N), and therefore below the theoretical worst-case 
bound of O(log N)’ for segment trees. 

The maximum time for the location of a single point in the same conditions is 
also plotted on Fig. 11. Precise comparison between theoretical worst-case 
performance in O(log N)2 and measured maximum proved inconclusive, and no 
poly-logarithmic fit was drawn. 

In order to further demonstrate the excellent location performance of the segment 
tree on graded meshes, a straightforward location algorithm was written and run to 
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1 POLY2C 

FIG. 9. Typical graded mesh in a 4: 1 contraction. 

locate 20,000 points in an 800 element mesh, a test case presented in [19]. The 
speedup achieved with the segment tree is 94, which is to be compared with the 
speedup of 3 obtained in [ 191. 

The segment tree is rebuilt between iterations, and the building cost itself should 
be checked against theoretical values (Fig. 11). The theoretical worst-case bound is 
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FIG. 10. Maximum execution time, average execution time and corresponding logarithmic tit for the 
location of a point in a graded mesh stored in a 2D segment tree. Implementation on an Apollo DN 
3000 in C language. 
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FIG. 11. Execution time for building a 2D segment tree and storing a graded mesh in it. Implementa- 
tion on an Apollo DN 3000 in C language. 

represented by a curve of arbitrary scale for visual comparison. It can be seen that 
building time is roughly linear in N and below the theoretical bound. Inclusion of 
the building time in the above comparison only reduces the computed speedup of 
10%. 

6. CONCLUSION 

The meshing and interpolation problems encountered in adaptive remeshing with 
unstructured grids are very different in nature. They were solved separately using 
specific data structures based on bisection. These structures are straightforward to 
program and yet their performance on graded meshes is close to that of present day 
best algorithms. The structures can also be used to solve the geometrical problems 
associated with other numerical methods such as the method of characteristics. 
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